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Work plan

Basics of Bayesian inference.

Points about generalization and generative models.

Basics of variational inference.

The structure of the problem we wish to solve.

Variational autoencoders as the desired solution.

Some properties of variational autoencoders.

Two sample comparison with variational autoencoders.

Code examples with PyStan, NumPy and Pyro: available at
https://pytutorial.marcoinacio.com/sections/vae/.
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Bayesian inference

Assume data D come from a distribution.

Example:

D = (Y1,Y2, ...,Yn)

Yi ∼ Bernoulli(α) i.i.d.

We want to infer about α. We start with a initial distribution for α, called prior
distribution. For example:

α ∼ Beta(2, 2)
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Given those two and the observed dataset d , we can derive our posterior distribution
from Bayes rule.

P(α|D = d) =
P(D = d |α)P(α)

P(D = d)

In this case we have an analytic solution:

α|D = d ∼ Beta(2 + sum(d), 2 + len(d)− sum(d))
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If instead, we have:

D = (Y1,Y2, ...,Yn)

Yi ∼ Normal(µ, σ2 = c) i.i.d.

With prior: µ ∼ Normal(µ0, σ
2
0)

We also have an analytic solution:

µ|D = d ∼ Normal

(
1

1

σ2
0
+ n

c

(
µ0

σ2
0
+

∑n
i=1 xi
c

)
,
(

1
σ2
0
+ n

c

)−1
)

(see Wikipedia’s “Conjugate prior” article for more cases with analytic solution)
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In more general cases, however, we can generate MCMC samples from α|D = d and
using specific algorithms such as Metropolis and HMC.
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Sampling replications

Once we have our posterior, we can sample new data (replications) from it:

P(Ỹj |D = d)

=

∫
P(Ỹj |D = d , α = k)pdfα|D=d(k)dk

=

∫
P(Ỹj |α = k)pdfα|D=d(k)dk

Or if α was discrete:

P(Ỹj |D = d) =
∑
k

P(Ỹj |α = k)P(α = k |D = d)
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Sample replications

P(Ỹj |D = d) =

∫
P(Ỹj |α = k)pdfα|D=d(k)dk

If we have MCMC posterior samples from α|D = d , then we can sample from the Ỹj |α
for each sample to obtain replications (so we approximate the pdf to discrete
distribution).
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This Bayesian setup is naturally generative and handles probabilistic modelling quite
well

(and with a frequentist estimator, we can also generate a confidence interval for new
predictions, although it’d be a little more tricky when there is no analytic solution)

But, it can be too simplistic when we have more complex, multidimensional data and,
it’s problematic for big data in particular, as we’ll see.
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On the other hand, some powerful models like dense neural networks do not have this
easy way to extract generative and probabilistic/uncertainty measurements (not that
it’s not possible).

So, it would be nice to have generative and probabilistic modeling framework that
leverages on the state-of-art machine learning power house.
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Why generalize

Points to think about:

Why generalize? What are the consequence?

Bias variance tradeoff.

Class complexity, assumptions, generalization and irreducible error.

Convergence to the oracle of the class, and convergence “speed”.

Decision theory and impossibility of a dominant estimator for all classes of
problems (except for some extremely simple ones).

See https://pytutorial.marcoinacio.com/sections/bias variance mse convergence/ for
some “theory”/examples regarding this topic.
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Why generative?

Why generative modeling and/or density estimation in machine learning? What are the
consequences?

Definition of the objective at hand: distinction between trying to predict a point
with low MSE and predicting something similar to possible data points.

Necessity of generating new similar data (replications): data augmentation, new
instances for structured data (e.g.: sound, images, molecules).

Probabilistic measurement, uncertainty quantification, interpretability of results,
discrepancy of data points or datasets.

Possibility of include a probabilistic priori knowledge and understand its impact.

Take advantage of power-full new machine learning tools for these classes of
problems.
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Properties

How does it each methodology compare in terms of probabilistic modeling and
generative:

Probalistic modeling Generative

Bayesian inference Naturally Easy
Frequestist inference Yes Tricky
Machine learning Generally not Tricky
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MCMC scalability to big data

So, given a desired posterior distribution

P(Z |D = d) =
P(D = d |Z )P(Z )

P(D = d)

We can generate MCMC samples and the show is over. However, this approach has its
drawbacks such as big data scalability: MCMC is incompatible with data subsampling
(Betancourt, 2015).

So, let’s stick with Bayesian inference for now, and consider a more scalable alternative
to MCMC.
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Very very very complex notation ahead

But first things first.

Notation warning: let’s assume that P is a probability measure and, that P(Z) is the
distribution of Z relative to this measure (P(Z |D=d) being the posterior distribution of
Z ).

That is: P(Z)(c) = P(Z = c) and P(Z)(A) = P(Z ∈ A).

Let’s assume we can define other probabilities measures, say Q, and therefore, we
would have Q(Z) as the distribution of Z relative to Q (which might be distinct from
P(Z)!).
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Variational inference

So, instead of doing MCMC inference, let’s approximate P by some Qϕ. That is, find
the closest distribution inside a class of distributions indexed by a parameter ϕ.

We can then use the Kullback–Leibler divergence as the criterion of proximity between
them:

DKL(Q
(Z)
ϕ |P(Z |D=d))

= EQϕ
[logQϕ(Z )− logP(Z |D = d)]
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DKL(Q
(Z)
ϕ |P(Z |D=d))

= EQϕ
[logQϕ(Z )− logP(Z |D = d)]

Where: EQϕ
(f (Z )) =

∫
Ω f (Z (k))Q(dk) =

∫
R f (k)Q(Z)(dk).

If Z is a discrete random variable:
∑

Z f (k)Q(Z = k).

If Z is a continuous random variable:
∫
R f (k) pdfQ(Z)(k) dk.
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Now, note that this

DKL(Q
(Z)
ϕ |P(Z |D=d))

= EQϕ
[logQϕ(Z )− logP(Z |D = d)]

= EQϕ
[logQϕ(Z )− logP(D = d |Z )− logP(Z )] + logP(D = d)

can be rewritten as:

logP(D = d)−DKL(Q
(Z)
ϕ |P(Z |D=d))

= EQϕ
[logP(D = d |Z ) + logP(Z )− logQϕ(Z )]
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Since logP(D = d) is constant in relation to Q, it suffices to maximize

EQϕ
[logP(D = d |Z ) + logP(Z )− logQϕ(Z )]

= EQϕ
[logP(D = d ,Z )− logQϕ(Z )]

This equation is called ELBO: the evidence lower bound.
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EQϕ
[logP(D = d |Z ) + logP(Z )− logQϕ(Z )]

= EQϕ
[logP(D = d ,Z )− logQϕ(Z )]

Note that this maximization is basically a tradeoff: choose ϕ such that regions where
P(D = d ,Z ) is larger (in average) are favored or such that Qϕ get its mass better
spread across the parameter space of Z (greater entropy).

Also note that we switched from a problem of MCMC sampling (parameter space
exploration) to a problem of optimization, for which we can use data subsampling,
SGD (see, P. Contributors, n.d. and E. Contributors, n.d. for caveats).

Bonus: you can use variational inference as warmup for MCMC sampling, see Hoffman
et al., 2019.
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Generation of similar instances

Now let’s put variational inference on hold for a while.

Given random variable D = (X1,X2, ...,Xn) (e.g.: MNIST handwritten digit), let us
generate replications, new instances, for each similar data points, for which. We could
do this by encoding information in latent random variables Z = (Z1,Z2, ...,Zn).

In case of MNIST handwritten digits, for instance, each Zi could encode information
about digit, stroke, angle, calligraphy, etc (Doersch, 2016).
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Generation of similar instances

We could work with an hierarchical model Bayesian inference in a classical sense:

P(θ,Z |D = d) =
P(D = d |Z , θ)P(Z |θ)P(θ)

P(D = d)

=
P(θ)

∏n
i=1 P(Xi = xi |Zi , θ)P(Zi |θ)

P(D = d)

But this is a little complicated for such a complex problem... defining P(D = d |Z , θ) is
specially tricky for images (high dimension).
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So let us instead, we work with a evidence optimization of θ.

Then instead of

P(θ|D = d) =
P(D = d |θ)P(θ)

P(D = d)

We work with maximizing P(D = d ; θ) = Pθ(D = d) (akin to a MLE or even a MAP
assuming we had uniform prior on θ for this parameterization).
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Let’s also consider the following structure:

Pθ(D = d |Z ) =
n∏

i=1

Normal(Xi = xi ; (µi , σi ) = gθ(Zi ))

Z ∼ Normal(0, 1)

Here gθ is a complex function with parameter θ. Note that, if {gθ : θ ∈ Θ} is complex
enough, we can actually model any distribution of Xi = xi |Zi ! So, we use neural
networks due to its flexibility, scalability and the universal approximation theorem.

Some might be sad that we are not measuring the uncertainty of θ here, but just
imagine the attempting to this here!
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Curse of dimensionality

So, now that we gave up on a full Bayesian approach, let’s then maximize
Pθ(D = d) =

∫
Pθ(D = d |Z = z)P(Z)(dz):

We sample from P(Z).

Input those values on the neural network.

Apply the output on the likelihood.

Backpropagate, step and voila... well, not quite so.

We could stop here, if it weren’t for something: the curse of dimensionality (see
Doersch, 2016).
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Variational inference revisited

We can solve the curse using variational inference, but first of all, let’s update our
previous equation:

logP(D = d)−DKL(Q
(Z)
ϕ |P(Z |D=d))

= EQϕ
[logP(D = d |Z ) + logP(Z )− logQϕ(Z )]

with the dependency we now have on θ:

logPθ(D = d)−DKL(Q
(Z)
ϕ |P(Z |D=d)

θ )

= EQϕ
[logPθ(D = d |Z ) + logP(Z )− logQϕ(Z )]
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Problem solved?

logPθ(D = d)−DKL(Q
(Z)
ϕ |P(Z |D=d)

θ )

= EQϕ
[logPθ(D|Z ) + logP(Z )− logQϕ(Z )|D = d ]

= EQϕ
[logPθ(D|Z )|D = d ]−DKL(Q

(Z)
ϕ |P(Z))

Now can optimize the right hand size of the equation as before given the right choice a
Q:

Qϕ(Zi |Xi = xi ) = Distribution(Zi ;ϕi )
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Now can optimize the right hand size of the equation as before given the right choice a
Q:

Qϕ(Zi |Xi = xi ) = Distribution(Zi ;ϕi )

This framework has a problem though...

We have to optimize a ϕi for every instance in the dataset, this is computationally
expensive.
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Variational inference revisited again

So, we introduce the idea of amortization, by having Qϕ dependent on our Xi of
interest:

logPθ(D = d)−DKL(Q
(Z |D=d)
ϕ |P(Z |D=d)

θ )

= EQϕ
[logPθ(D|Z ) + logP(Z )− logQϕ(Z |D)|D = d ]
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Problem solved!

logPθ(D = d)−DKL(Q
(Z |D=d)
ϕ |P(Z |D=d)

θ )

= EQϕ
[logPθ(D|Z ) + logP(Z )− logQϕ(Z |D)|D = d ]

= EQϕ
[logPθ(D|Z )|D = d ]−DKL(Q

(Z |D=d)
ϕ |P(Z))

Now can optimize the right hand size of the equation as before given the right choice
of Q:

Qϕ(Zi |Xi = xi ) = Normal(Zi ; (µi , σi ) = hϕ(xi ))

This approach is called amortized variational inference (see Kim and Pavlovic, 2021,
for caveats) and this framework is called variational autoenconder (Kingma & Welling,
2013).
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+ loss
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eval

eval

Diagram of the algorithm for optimizing

EQϕ
[logPθ(D|Z )|D = d ]−DKL(Q

(Z |D=d)
ϕ |P(Z))
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Remarks

logPθ(D = d)−DKL(Q
(Z |D=d)
ϕ |P(Z |D=d)

θ )

= EQϕ
[logPθ(D|Z )|D = d ]−DKL(Q

(Z |D=d)
ϕ |P(Z))

Note however that now we have something slightly different on the left hand size as
Pθ(D = d) is not constant (with regards to what we are optimizing) anymore!

So we are actually minimizing the distance between Q and P while maximizing the
evidence.

We have two objectives here: first find a Qϕ that is close to P for the parameters that
are fully Bayesian (Z ), and second, maximize the evidence as was the original goal.
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Generating new instances

Now how do we generate new instances X̃j ’s? If we were working with a fully Bayesian
model we could do:

P(X̃j |D = d) =

∫ ∫
P(X̃j |Z̃j = z , θ = o)P(Z̃j )(dz)P(θ|D=d)(do)

Since we aren’t, we work with:

Pθ(X̃j |D = d) =

∫
Pθ(X̃j |Z̃j = z)P(Z̃j )(dz)

i.e.: sample from P(Z ), apply the result on the neural network gθ and the sample from
a Normal((µ, σ) = gθ).
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Properties 2.0

So, from this we can conclude that:

Probalistic modeling Generative

Bayesian inference Naturally Easy
Frequestist inference Yes Tricky
Machine learning Generally not Tricky
VAE Yes Easy
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How can VAE have this properties?

But VAEs can be understood as a frequentist method like any other, so why is it easy
to generate sample from it unlike many frequentist estimation methods?
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Well, first let’s see why it’s not so easy to learn easy to sample new predictions from a
frequentist model:

D = (Y1,Y2, ...,Yn)

Yi ∼ Normal(µ, σ2) i.i.d.

Once we have the estimator (µ̂, σ̂) can we generate new predictions from
X̃j ∼ Normal(µ̂, σ̂)?
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Once we have the estimator (µ̂, σ̂) can we generate new predictions from
X̃j ∼ Normal(µ̂, σ̂)?

Not a good idea: it’s a low quality prediction: we won’t generate prediction intervals
with correct frequentist coverage.
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We can see this from the angle of Bayesian inference: using the Jeffreys prior, you get
an equivalent inference to frequentist Statistics, but the prediction intervals will be
different than that because we propagate the uncertainty over (µ̂, σ̂) to X̃j .

For this simple case we have an analytic solution (it’s a T-student distribution), but for
many cases we don’t
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Once we have the estimator (µ̂, σ̂) can we generate new predictions from
X̃j ∼ Normal(µ̂, σ̂)? Not a good idea.

So why we do that with variational autoencoders?

Because variational autoencoders live in a very large/powerful class (e.g.: an infinite
mixture of normal distributions) to the point that we ignore propagating the
uncertainty over each (µ̂j , σ̂j) pair that we sample.

39 / 44



Introduction
Variational inference

Intermission
Variational autoencoders

Once we have the estimator (µ̂, σ̂) can we generate new predictions from
X̃j ∼ Normal(µ̂, σ̂)? Not a good idea.

So why we do that with variational autoencoders?

Because variational autoencoders live in a very large/powerful class (e.g.: an infinite
mixture of normal distributions) to the point that we ignore propagating the
uncertainty over each (µ̂j , σ̂j) pair that we sample.

39 / 44



Introduction
Variational inference

Intermission
Variational autoencoders

Can VAE also be used as autoencoders, for representation learning and clusterization?

Yes, see:

http://thoth.inrialpes.fr/workshop/paiss2019/lecun-20191003-paiss.pdf

https://stats.stackexchange.com/questions/324340

http://pyro.ai/examples/vae.html
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Can VAE be used as density estimators? Absolutely: in Inácio et al., 2021, we use VAE
as density estimation method to measure the distance between two sample (and with
the help of permutation tests, test the hypothesis of whether the two samples arise
from the same distribution).
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